Skip to main content

Posts

Showing posts from December, 2019

Build an integrating artificial intelligence (AI)-Powered Mobile App

Creating an AI-powered mobile app involves integrating artificial intelligence (AI) technologies to solve specific problems or provide unique features. Here's an overview of how to approach building an AI-powered mobile app: Key Steps to Build an AI-Powered Mobile App 1. Define the App's Purpose and Use Case Identify the problem your app will solve or the value it will offer. Examples of AI use cases in mobile apps: Chatbots (e.g., virtual assistants like Siri) Image Recognition (e.g., object detection, face recognition) Speech Recognition (e.g., voice commands, transcription) Recommendation Systems (e.g., personalized content or product recommendations) Predictive Analysis (e.g., health tracking, financial forecasting) Natural Language Processing (NLP) (e.g., sentiment analysis, language translation) 2. Choose an AI Technology or Framework Select the appropriate AI technologies or frameworks based on your use case: Machine Learning : Core frameworks: TensorFlow, PyTorch,...

Parsing JSON data from Alamofire into Response Array or Dictionary

1. model class used struct REVIEWLIST {          let rating_id : String !     let user_id : String !     let user_name : String !     let user_email : String !     let rating_type : String !     let rating : String !     let fac_id : String !     let event_id : String !     let admin_approval : String !     let report_abuse : String !     let created_on : String !     let updated_on : String !     let updated_by : String !     let review_message : String !          let review_listing : [ ReviewListing ]          init (json: [ String : Any ]) {                  let rating_id =   json[ "rating_id" ] as ? String         let user_id =   jso...